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The present study details the derivation and application of a finite-

volume-based methodology to the simulation of biofilm processes in

axisymmetric reactors. Multiple space scales, ranging from the micron
to the meter, and multiple time scales, ranging from the second to the
day. are resolved. Unsteady problems are considered, where diffusion
and biochemical reactions are the dominant physical phenomena.
Moreover, moving boundaries such as the interface between biofilm
and bulk liquid are accounted for, Numerical results are presented for a
tew test cases, and the sensitivity of the predictions to several numerical
and physical parameters is studied, including time step value, number
of iterations per time step, grid size, and initial conditions. ¢ 1983
Academic Press, fnc.

1. INTRODUCTION

Biofilm growth is an important process in many
industrial conduit systems. Corrosion of tubing in water
distribution systems is frequently linked to bacterial
populalions at corrosion sites, indicating that biofilms can
influence the surface degradation [17. The power industry
is likewise plagued by reduced cfficiency ol heat (ransler
cauipment eaused by excessive biofilm accumulition,

[n closed conduits, lfow processes governing mass trans-
port. biollm accumulation, and the biotransformation of
organic constituents are intrinsically interrelated. Sus-
pended cells are transported to the conduit surface (sub-
stratum) where they may adsorb. Some fraction of these
adsorbed cells desorb and return into suspension, perhaps
through some diffusion-like process. If environmental con-
ditions are favorable, the adsorbed cells grow, replicate, and
form a matrix composed of extracellular polymer substance
(EPS) which binds the cells together. The aggregate of
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attached cells, EPS, and other particulate matler is termed
hiofilm [27]. Once the biofilm is established, additional cells
and particulate matter may attach to and detach from the
biofilm surface. The net accumulation of biofilm is therefore
the result of biomass added to the surface from the processes
of adsorption, growth, and attachment, less the amount
of mass removed by the processes of desorption and
detachment.

In order to study and model biofilm behavior, an
important distinction has to be made between biofilms and
hiofilm systems. Characklis [2] defines biofilm systems as
consisting of five compartments:

o Substratum, the solid surface where the

microorganisms attach;
e Base film, a structured accumulation of cells;

e Surface film, which provides the transition between
the base film and the bulk liquid compartment;

o Bulk liguid, which carries microorganisms and
substrates in solution and exchanges mass and heat with
the base film through the surface;

= Gas, which provides acralion or removal of gascous
reiaction products and is present in external flow problems.

Components of biofilm systems are microorganisms, the
organic and inorganic products of their metabolism, sub-
strates (defined as the growth limiting nutrients), and other
nutrients. Typical interactions and processes between these
components are transport (advection, diffusion), transfer
(cell attachment and detachment, interfacial diffusion), and
transformation (chemical reactions}. The biofilm itself con-
sists of two of the above compartments: the base film and
the surface film. A very important characteristic of a biofilm
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is that a certain, typically large, portion of its volume is
liquid.

An essential parameter in the study of a given system is its
geometry. Widely studied geometries are continuous flow
stirred tank reactors (CFSTR)} and plug flow reactors
{PFR). CFSTRs are well-mixed tanks, where a continuous
flow of reactants is present, and the well-mixed bulk is con-
stantly removed to allow for a constant bulk volume. PFRs
are idealized models of pipelines, where the reactants enter
the pipe at the inlet, and products leave the pipe at the
outlet, Other geometries, such as porous media, are studied
as well.

A considerabie amount of experimental rescarch on the
kinetics of bioflilm processes has been conducted in recent
years [3]. The detailed mechanisms of biofilm growth, the
specific biochemical reactions that take place at the biofilm
interface with the liquid phase, and the effect of different
biocides are examples of active research areas. On the other
hand, numerical simulations of biofilm processes have not
yet reached the sophistication that is typical of other sectors
of industry, with aerospace and mechanical research and
development firms at the forefront. One reason for the
discrepancy is that it is extremely difficult to couple the
equations describing all of the biofilm processes to create a
simulation model capable of predicting biofilm behavior.
Individual biofilm processes are inherently nonlinear and
their response to changes in bulk fluid transport phenomena
has not been fully documented [2]. However, numerical
simulations hold enormous promise for this difficult
problem. First, numerical simulations can be used to
separate the processes so that each specific phenomena can
be understood by itself. Then the processes can be coupled
in various ways in order to better understand the effects of
various couplings. This separation of processes is difficult if
not totally impossible in the laboratory. Most importantly,
once biofilm phenomena can be simulated at the local level,
the information can be scaled up to analyze problems in
industrial conduit systems,

A few models of multispecies biofilm systems have been
studied in the past. Wanner and Gujer [4] propose a model
that is one-dimensional in space, whereby a multispecies
biofilm is attached to a solid wall and in contact with a
liguid phase through an interface. The biofilm thickness
is allowed to change, due to growth, sloughing, or biocide
effects, and the transport of substrate elements to the
different bacteria in the biofilm is modeled. The method
of lines [5] is applied to reduce the partial differential
equations to ordinary differential equations that have to
be solved at every time step, and a standard integration
package is utilized for that purpose.

More recently, the International Association on Water
Pollution Research and Control (IAWPRC) issued a report
{11, in which the general governing equations for the
kinetics of biofilm systems are derived. Applications to a
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number of biofilm reactors are discussed, including trickling
filters, packed beds and groundwater systems, biological
fluidizer bed reactors, and rotating biological contactors.
The model is applicable to two- and three-dimensional
geometries, allows for moving boundaries such as the bulk
liquid interface, and includes some modeling of attachment,
detachment, and sloughing at the interface. Molecular diffu-
sion, turbulent diffusion, and advection are accounted for,
and a general model for transformation processes, such as
biotic and abiotic reactions, is proposed. These equations
are applicable to practical cases where multiple space scales
exist, because the biofilm thickness is measured in
micrometers and the pipe or reactor characteristic length in
meters, and in some cases kilometers. Moreover, multiple
time scales are present which stem from the fact that biotic
reactions can have characteristic times measured in days
and fluid mechanics processes can change in seconds.

Although the above-mentioned equations [1] are very
general, or probably because of that, no numerical techni-
que for their solution is proposed or advocated. Moreover,
no allowance is made for temperature effects on the biofilm
behavior, and the fluid mechanics of the bulk liquid is
treated in a simplified manner, whereby a velocity profile is
imposed for either laminar or turbulent incompressible
flows. -

In the present work, the base biefilm model proposed by
the TAWPRC [1] s implemented and at least partiaily
validated. Specifically, the governing equations for a multi-
species biofilm model are reformulated in integral conser-
vation form, discretized using upwind technology [6],
and solved for axisymmetric geometries. The approach
proposed can be extended to three-dimensional configura-
tions due to the geometric flexibility of finite volumes and
allows for a simple and straightforward representation of
moving boundaries, such as the surface film.

The subject matter of this article is the following.
Section 2 contains an overview of the mathematical
modeling of biofilm processes in pipelines. Section 3
describes the biofilm systern governing equations, which are
based on the conservation of mass principle. Section 4
explains the numerical methods applied to solve the
resulting coupled, non-linear partial differential equations.
Finally, Section 5 presents a few results obtained with the
proposed methodology for axisymmetric geometries, and in
Section 6 some conclusions are drawn.

2. BIOFILM PROCESSES IN CLOSED CONDUITS

Many industrial and natural biofilm system configura-
tions can be accurately modeled by means of the PFR
geometry, Examples include natural streams, heat
exchangers, oil pipes, water distribution and waste water
systems, and many more. A common characteristic of the
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above systems is that there exists a significant advective
motion of the liquid medium (bulk compartment) that
carries ali reactants and products to downstream locations.
In fact, this motion and the existence of radial concentration
gradients in the bulk compartment are the major differences
between PFRs and CFSTRs. :

The “base” biofilm model that is employed in the present
work [1] takes advantage of some simplifying assumptions
for the treatment of the different compartments that com-
prise the biofilm system. In particular, the gaseous compart-
ment is not considered in this study, which is limited to
closed conduits, and no attempt is made to model sub-
stratum corrosion. Consequently, attention will be focused
on three compartments: base film, surface film, and bulk
liquid.

In the following, a more thorough definition of the
organic and inorganic components present in a biofilm
system is provided, and the three classes of interaction
processes between these components (transport, trans-
formation, and transfer) are detailed.

2.1. Biofilm and Bulk Liquid Components

The biofilm systems that are analyzed in the present study
typically contain the following components: substrates and
other nutrients, microorganisms, metabolism products, and
biocides. These components can be divided into two broad
classes:

= Scluble components {substrates, nutrients, biocides,
inorganic products of metabolism); and

» Particulate components (microorganisms and organic
polymers).

In the following passages, the first class will be referred to
as substrate, although it should be clear from the above
discussion that the terminology is somewhat inaccurate.
Several simplifying assumptions are employed in the
modeling of the “base” biofilm [1]. In particular, one liquid
phase and several (N} solid phases will comprise the
biofilm. Each solid phase will contain only one particulate
component and will not carry any other components.
Conversely, the liquid phase will carry only soluble
components.

The number and the kind of unknowns in the two com-
partments is different. Specifically, the bulk liquid contains
N, + Noa unknowns, related to N, substrates and N,
particulates, respectively. The biofilm is modeled by means
of Ny + N — | independent unknowns. Considering the
bulk liquid to be composed of only one (liquid) phase, the
unknown quantities are the concentrations C,, expressed as
mass per unit volume of liquid, where / is an index that
spans the range one to N, + N ... In the biofilm, using the
additional assumptions that volume fraction of the liquid
phase ¢, and density of the solid phases p; are constant, the
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N e substrate unknowns are still the concentrations C,, but
the N, — | independent unknowns that represent the solid
phases are given by the volume fractions ¢;, equal to the
ratio of the volume of the jth phase to the total volume. The
(trivial) relationship

Nparl
2 og=1—¢
i=1

(2.1)

ensures that only N
independent.

It may be useful to point out that there are other ways the
concentration, or the mass, of particulates in the film can be
defined, for example, biofilm particulate mass per unit
substratum area (units, ML~*) and biofilm particulate
mass per unit reactor volume (units, ML™?). Most
laboratory measurement methods determine the mass of the
particulates in the film using one of the above units.
However, very simple conversions are possible between
these units.

— 1 solid phase volume fractions are

part

2.2. Transport: Advection and Diffusion

Transport due to advection and diffusion plays a
fundamental role in the modeling of a biofilm process. In a
pipeline system, advection moves components int the flow
direction. Moreover, the growth of the biofilm creates an
advective motion that affects the components in the film. In
extreme cases, the increased biofilm thickness can reduce
the pipe section, influencing the advective phenomena in the
bulk liquid. The flow regime can be either laminar or
turbulent, with consequent differences in both velocity
profiles and transport properties.

Diffusion occurs both in the radial and axial directions.
The axial diffusion is typically orders of magnitude smaller
than the advection in the same direction; thus it can be
omitted. Diffusion in the radial direction is a very important
phenomenon. It transfers soluble and particulate com-
ponents between the bulk liquid and the film. The rate of
diffusion is determined by the flow regime. In laminar flow,
the diffusion coefficient of a given component in the pipe
is equal to the molecular diffusion of the component, while
in turbulent flow conditions the diffusion coefficient varies
from the eddy diffusion to the molecular one as particles
move from the center of the pipe towards the wall of the
pipe. Notter and Sleicher [7] give an empirical formula for
determining the eddy diffusivity,

2.3. Transformation: Chemical Reactions

The biofilm components interact with each other via
biochemical reactions. These reactions can be described by
their stoichiometric and rate coefficients. Many biochemical
reactions can occur at the same time in a given system, for
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example, “growth” reactions for each microorganism and
oxidization or reduction of inorganic chemicals. Many
components can and do participate in every reaction.

Assuming that N, reactions take place and considering
only irreversible reactions (although similar considerations
would apply to reversible reactions), a generic reaction ¢ can
be written as
Ui Cpt o to, G — oy Copy+ -+, Cpy (22)
where L=N_, + N, is the total number of components
present, and «;, is a stoichiometric coefficient associated
with the kth component in the ith reaction. Components on
the left-hand side of the arrow are consumed, and com-
ponents on the right-hand side are produced. In many cases,
it 15 more convenient to rewrite Eq. (2.2) in terms of
stoichiometric coefficients that are positive when the
corresponding component is produced, and negative when
the compenent is consumed. Then the previous expression
becomes

v O+ v Gt o 4y € =0, (2.3)

where v, , = —a,, for the components on the left-hand side
of Eq. (2.2), and v, =2, otherwise.

The net rate of production for a component { can be
expressed as

Mrxn
W, = 2 viiPr i=1,2, o, N+ Npan,

i=1

(2.4)

where P, is the reaction rate for the jth reaction. A specific
reaction rate can be broken into contributions from the
participating components,

Npar + Nyub

Pf = l_l T:f.k(ck)’ J= 1’ 29 ey erns (2’5)
k=1

where T, is the reaction kinetic expression for the jth
reaction involving the & th component . Typical reaction
kinetic expressions are:

« Zero order,

Tie =K. (2.6)
« First order,
Tj.k = Kj.k Cis (2.7}
« Monod,
C
T,v= X (2.3)

K+ C
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« Inhibition,

K«

T, ,=—r—.
e K.+ Cy

(2.9)

If a given component k& does not participate in the jth
reaction, then its reaction kinetic expression is a special case
of the zero-order expression with X, , = 1. A typical reaction
rate equation for a single particulate, single substrate
reaction is (first order for the particulate, Monod for the
substrate)

Csub

—_—, 2.10
Kj.sub+ Csuh ( )

Pj = Hmax Cpurl

where p,,, is the maximum growth rate of the cell (the same
for all reactions j) and K, is called the half saturation
coefficient of the substrate in that reaction.

2.4, Transfer: Detachment and Attachment

Biofilm accumulation on solid surfaces is the resull of
many physical and chemical processes. The most important
are

» Adsorption, where the cells attach to the substratum
surface. [t can be reversible or irreversible;

o Desorption, where the absorbed cells can leave the
substratum and reenter the bulk compartment;

s Attachment, where the ceils in the bulk compartment
attach themselves to an already existent biefilm;

« Detachment, where a single cell or a group of cells
leave the biofilm.

In the present model an initial layer of biofilm is assumed
present, thus adsorption and desorption are not included.
Attachment and adsorption are very similar processes, with
the exception that, in attachment, cells are captured by the
film, while, in adsorption, the capturing medium is the
substratum. Detachment can take at least two forms,
erosion and sloughing. Erosion refers to a continuous loss
of small amount of biofilm, while sloughing means rapid,
massive loss of biomass.

Te model the above described phenomena a net
detachment expression is utilized:

net detachment = detachment — artachment.  (2.11)

This expression describes the net flux of particulate mass
leaving the biofilm surface. It is also important to note that
this process is assumed to be present at the interface only,
which is a modeling approximation of insufficiently known
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accuracy. Current research efforts try to determine the
important parameters that influence the magnitude of
detachment and/or attachment [3]. In the present model
the interface Mux of particulate mass Ry, is a quadratic
function of the biofilm thickness L,

Roe=a: L5+ a, L+ ag, (2.12)

where the coefficients g, are determined by curve fits of
experimental values.

3. GOVERNING EQUATIONS

The equations that govern the time and space behavior of
the combined bulk liquid/biofilm system can be written in
integral form, valid for an arbitrary control volume Q2
bounded by a control surface &. This formulation is
consistent with the numerical algorithm to be discussed in
the next section and allows for a straightforward treatment
of the liquid/biofilm interface (surface film), as will be
detailed in the following. The control surface & is allowed
to move and deform with a pointwise velocity u,,.

At the present time, the velocity in the liquid phase is
imposed as either a parabolic (laminar) or a power-law
(turbulent) profile. Consequently, only continuity equa-
tions for the different species present in the two com-
partments are utilized, and the solution of the momentum
equations is avoided. Moreover, temperature changes and
their effects upon the physical and chemical characteristics
of the system are not considered. However, the present
model is capable of resolving unsteady phenomena, such
as species growth/decay, in the presence of moving
boundaries, such as the interface.

The governing equations are written for both biofilm and
buik liquid compartments. [n addition, the interface bound-
ary conditions, which include the modeling of attachment
and detachment, play a key role in the formulation.
Utilizing the definitions given in Section 2, the governing
equations for both compartments may be written in the
general form

%JﬂﬂQdQ%—f}gy(S—Sv)-nd.9’=m‘ngQ, (3.1)

where Q is the vector of unknowns, 8 and S, represent
inviscid (convective) and viscous (diffusive} fluxes, respec-
tively, and W is the vector of source terms. All of the above
vectors have a length of Ny, + N, in the bulk liquid
compartment, and Ny, + Ny, — 1 in the biofilm. The first
contribution to the left-hand side represents unsteady
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phenomena, the second term corresponds to flux in and out
of the control volume €, and the sum of the previous two
terms is balanced by production and/or disappearance of
species mass within the control volume. The unit vector n is
the local normal to the infinitesimal surface element 4%

In the bulk liquid compartment, the vectors Q and W
read

£ C, W,
&,C, W,
Q= ngNsub W= Wi (3.2)
” 3 .
SICNsuh +1 ,’VNsuh + 1
€10 Ny + 2 Winn+2
&0 N+ Npan W N + Noan

where the liquid phase volume fraction & is explicitly
present for consistency with the biofilm equations, to
be discussed shortly, but is identically equal to one in the
present model. The source terms have been defined in
Section 2, e.g, Eq. (2.4). The inviscid and viscous flux
vectors read

g, Ci{u—ug)
£,Cy(u—ug)

EICNN.,(“_“.Q)
e Cny+ (U —ug)
& Cn 0+ Au—wuy)

S=

8 C v+ Nm(“ —1g)
(3.3)
D\VC,

DNsuhVCNsub
DNsuh+ IVC”"Vsuh + 1

DNsuh + 2VCN5Ub+ 2

S, =

DN;ub+ NparIVCNsub+ Npan

where u is the (imposed ) velocity profile in the liquid phase,
and D, is the diffusion coeflicient for species i, which will
account for both laminar and turbulent diffusion. A
relatively simple model for diffusion, based upon Fick’s law,
has been utilized.

The vector entries for the biofilm compartment are
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slightly different from the ones already examined. The
vectors () and W read

£, C, W,
£,C; W,
g, C w
Q= 1% Ngub ., W= Naub , (34)
£ WNsub-y-l
€apa Wwt2

€ Npan - 1 2 Npan - L Wi Npan—1

and inviscid and viscous flux vectors become

—,Ciug
—g,Caug
S = _SrCNsubuQ ,
3] pl(“.- - ug)
&202(u, —ug)
B‘Vparl* 1prm7 l(us - uQ)
(3.5)
p,VC,
D,VC,
S(,‘ = DN‘”bchsub ,
0
0
0

where some additional simplifying assumptions are utilized:
the velocity of the liquid phase in the biofilm is taken to be
zero, the advective velocity of the solid phases u, is supposed
to be equal for all of the solid phases [1, 4], and the solid
phase diffusion is neglected. Moreover, the liquid phase
diffusion is laminar only.

In the above, the convective velocity in the bulk liquid u
is known (imposed), but the solid phase velocity in the
biofilm u, has not been determined. An equation for 4, may
be derived by writing the N, governing equations for the
solid phases using a fixed control volume. It may be useful
to reiterate that ¥, — 1 of these equations are independent
and have been presented in Egs. (3.1), (3.4), and (3.5).
Dividing each equation by p;, summing, and utilizing
Eq. (2.1) yields the integral equation

1 Noant WNsub+.f
] ﬂﬁ”ﬂ(.z S )dQ, (3.6)

J=1 p;‘

ff)yu,ndf/’=
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which may be written in differential form, using Gauss’
theorem,

1 Mpar W

Nsup+ ./

V.ou,=
=& 20 o

{3.7)

The previous result is not enough in itself to determine
magnitude and direction of the vector u,. However, the
direction of biofilm growth is known (or assumed) to be
essentially one-dimensional in the direction perpendicular
to the solid wall, and the previous result may be simplified
to

di, 1 N Wy

dz‘]—s,j:] pi

s +

(3.8)

where z is a space coordinate in the direction perpendicular
to the solid wall, and u, is the magnitude of the velocity
vector u,. This ordinary differential equation may be solved
for u, in the whole biofilm, given the biofilm properties and
the initial condition u, =0 at the solid wall.

Equations (3.1) and (3.8) are sufficient to describe the
behavior of this multispecies biofilm/bulk liquid system,
when complemented with appropriate boundary condi-
tions. Specificaily, at a solid wall the fluxes will be zero, at
the centerline of an axisymmetric problem a symmetry
condition of the kind

¢Q =0 (3.9)

0’? axis
will be valid, inlet flow conditions will be specified, and
outlet flow conditions will be extrapolated from the interior
solution.

The interface treatment is the remaining problem to be
considered in order to achieve a well-posed description of
the biofilm/bulk liquid system. In general, the interface will
be moving in time, due to the growth/decay of the bacterial
species. A relatively straightforward description of the inter-
face behavior can be arrived at if control volume ideas are
employed. Specifically, the interface may be considered to
coincide with a control surface at all times, separating a con-
trol volume in the bulk liquid from a control volume in the
biofilm. In general, both control volumes will move and
deform in time in order to follow the interface movement.
Then, a general boundary condition can be derived at the
interface [1]. It may be interesting to point out to the
reader familiar with elementary gas dynamics that the
derivation of this boundary condition is virtually identical
to the derivation of the Rankine—Hugoniot jump condi-
tions, valid across a surface of discontinuity in a gas flow.
This should not be surprising, due to the fact that the
interface is also a surface of discontinuity for the par-
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ticulates in suspension in the bulk liquid and for the solid
phases in the biofilm. The final result for the interface
boundary condition reads

[(8—S,) nJ=(Rp-n)), (3.10)

where the notation [(-}] indicates a jump of a given quan-
tity, which is the difference between values to the right and
to the left of a surface. The vector R, represents surfuce
source/sink terms, related to production or loss of mass
at the surface (the transfer processes). Physically, this
generalized boundary condition relates the jump in relative
fluxes to surface source terms, where the subscript F stands
for biofilm properties. The unit vector n, is normal to the
interface and is directed from the biofiim towards the bulk
liquid. The eniries in R, are vectors oriented with the direc-
tion of growth, which is again assumed to be orthogonal to
the solid wall. A positive source term represents biofilm
growth.

Specializing the general interface boundary condition,
Eq. (3.10), to the different species present in bulk liquid and
biofilm, yields specific equations that can be used to close
the mathematical problem given by Egs. (3.1) and (3.8).
The substrate species have no surface source/sink effects at
the interface; consequently the boundary condition reduces
to a statement of continuity of relative fluxes at the interface

(u—ug) n(e,C)p— [DAVC) n/]y
= —ug, -0,{&C)— [D,(VC)) 0],

i=1,2, . Nou, (3.11)

where the subscript B stands for bulk liquid conditions and
the subscript F stands for biofilm properties. The above
equation has been simplified by means of the assumption
that the velocity u is zero at the interface. Moreover, it may
be noted that the diffusion flux will be well defined only if
the substrate concentrations C; are continuous across the
interface. However, in general the concentration gradients
will not be continuous across the interface, as can be
inferred from Eq. (3.11) when taking into account that ¢,
changes from the bulk liquid value of one to the biofilm
value of | —F Yot g,

The boundary conditions for the particulate species
suspended in the bulk liquid will include interfacial transfer
processes, namely those due to flocculation or deposition,
erosion, and sloughing. It reads

(0—ug)- nI(ElCNgub+j)B - [DN,UH_,-(VCNSHH J-ngdg

=[(R}r 0], j=1,2, s Npares (3.12)

where the transfer processes appear in the source term
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(R;). The magnitude of the vector entry (R,), has been
given in Section 2 as a simple equation, Eq. (2.12),
independent of the species . The boundary conditions for
N — 1 solid phases in the biofilm read

—(,—ug) 'nl(ﬁjpj)Fz [(R,i]l-"nl]: Jj=12, ., Npart - L
{3.13)

Similar to the derivation of the equation for the convec-
tive velocity of the solid phases, Eq. (3.6), an expression for
the component of the interface velocity (wg), normal to the

- interface may be derived by writing all N, interface

boundary conditions in the biofilm, dividing by p,,
summing, and recognizing that Y M ¢, = | —¢,. The final
result reads

1 Nfi" (Rj}r' n,

(up); n;=u,-n,+ 1
—Er;i—y Py

(3.14)

At this point, an expression for the local biofilm thickness
L, can be obtained by recognizing that its time rate of
change will be equal to the normal component of the
interface velocity

dL,
dt

(3.15)

=(ug),-m,.

With the above boundary conditions, the system of equa-
tions given in Eq. (3.1) is well posed and allows the
investigation of several important biofilm processes, as will
be detailed in the following.

4. NUMERICAL FORMULATION

The governing equations presented in Eq. (3.1) are dis-
cretized in space and advanced in time using a finite-volume
approach [5]. The physical domain is subdivided into a
(large ) number of control volumes, and the governing equa-
tions are solved for the unknown volume-averaged values of
the vector F at a given time. Although the present technique
is applicable to arbitrary subdivisions, only structured
meshes of control volumes will be utilized in this work.
Moreover, only axisymmetric problems are analyzed in this
study, which amounts to counsidering conduits of circular
cross sections. In a structured environment, a general
indexing scheme can be utilized to refer to the generic
contrel volume in the domain, and two indexes (7, j) will
be enough to describe two-dimensional or axisymmetric
domains. The two indexes will roughly span “rows” and
“columns” of volumes in the bulk liquid and biofilm com-
partments, where “rows” are approximately aligned with
the flow direction, and “columns” go from the pipe wall to
the centerline.
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Writing the governing equations,
generic control volume (i, ) yields

Eq. (3.1), for the

0(Q 2,
‘#WL LS=S) i Wi i %
~(S=8.) 1Mo, Sy
+ (S_Su)i,j+l,v'2 N iein
- (S _Su)f.j— [V Ly 1/2-%.,;— 1/2] = erngs (4.1

where volume-averaged values for Q and W have been
introduced:

[, @ W, ff], wao

" i

(4.2)

The surface integral has been broken into four contributions
from the four boundary surfaces of control volume (i, j),
whose unit normals have been indicated by n,,,, ; and
n, ;. in the “row” and “column” directions, respectively.
Surface-averaged vaiues of the fluxes have been utilized,

{
(S — Sl:)ii 2., &%

354: 1/2,§ 5 ix 2

(S—8,)d¥, (4.3)

with similar expressions for the j-direction. In the above and
the following, the dot product between flux vectors or
Jacoblan matrices and unit normals indicates that the
operation is performed on each flux or Jacobian entry. Typi-
caily, surface integral and source term contributions are
grouped into a steady state restdual, R, and Eq. (4.1) reads

Q)

+R, =0,
ot Y

(4.4)

where

R,= (=S v Min, T
—(S=S8)_ym Mo F 2y
+(8—=8S) 012 000 w0

—(5- Su)l.j— 2y 1/2‘9;.1'— 1!2] - WifQij' (4.5)

The governing equations, Eq. (4.4), are advanced in time
by means of a generalized three-level discretization [ 8]

(1+9) HQRY, —¥AQQ);™"
ar"

(0—1)Ry—OR*,

(4.6)
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where the superscript # refers to the time level, the forward
difference operator A{-}is defined as
A=) =y (4.7)
and i, @ are two parameters that take different numerical
values for different classical time integration schemes.
Specifically, ¥ = 0 and 6 = 0 yield the Euler explicit scheme;
=0 and 8=1 yield the Euler implicit scheme; ¢ =0 and
=172 yield the trapezoidal scheme; y =1 and 8 =1 yield
the 3-point backward scheme. It may be useful to point out
that the first two schemes are first-order accurate in time,
whereas the other two are second-order accurate.

Starting from a known state at time level i, the equation
shown is solved for the volume-averaged values of Q at the
new time level 7+ 1. When initial conditions are given (at
time 0), the procedure can be started and carried out
indefinitely, However, for nonzero values of the parameter
#, the right-hand side of the equation contains a contribu-
tion from the residual at the new time level, and this makes
the equation nonlinear in the unknown Q”*'. Nonlinear
equations are usually solved by using a linearization algo-
rithm, coupled with an 1terative procedure applied to the
linear equations until convergence to the nonlinear solution
is achieved. In the present paper, Newton's method is
applied to linearize the equations. Writing the previous
equation as a function L of the unknown Q" *! yields

(1 A4(Q )Y A(QQR)Y !
L(Qn+1) +¢’) (Q 31,_,.{” ‘J" (Q )y
-[(0-1)R}— R"“] 0; (4.8)
and the linear scheme is obtained
L'(Q"Y4Q°= —-L(Q"), P=0,1, .., (4.9)

where the iteration index P is such that Q7=°= Q" and at
convergence QF = =Q"*! The function L(Q) is called
the unsteady residual, and L'{Q) is its first derivative. Their
expressions are slightly complicated by the fact that the con-
trol volumes are moving and deforming in time, foliowing
the growth/decay of the biofilm. After some algebra [8], it
can be shown that the unsteady residual is given by

Py _R77Q7—QY) ¢ 2y 4!
(Q ) At” L_1+l,l'} - Af"
+ - ro— 1Ry —oR?
1+ i i
1 P
ﬁm[ (0—1)R;—0R/], (4.10)

where the geometric conservation law established by
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Thomas and Lombard [9] has been utilized to describe the
volume changes due to movement and deformation,
yielding a geometric residual R,

R;=—[ug-n,, 12,75 i~ o M

Rl TR PRy A 12— Hg D ,_ 1,'25’?.;'— 2] (411)
In summary, the unsteady residual includes fuxes and
chemistry source terms (R), volume changes (R), and
unsteady contributions due to time rates of change of the
concentration vector Q.

The first derivative of the unsteady residual, L'(Q), can be
easily calculated when the dependence of geometric residual
and cell volumes upon the vector Q7 is neglected. In reality,
volume changes are dictated by the growth/decay of the
biofilm in time, which is a function of the concentration
vector Q. However, this functional dependence is extremely
involved and its inclusion in the linearization process is
impractical. Incidentally, it should be noted that as long as
the linearization is not unstable, any approximation that
does not excessively degrade the convergence rate to the
non-linear solution is acceptable. The final result for L'(Q)
reads

Q“" 7 3RP
L(QH = 12
Q9= Al l+!ﬁ GQ *12)
where
R, '
aQ =[(D-D )r+1/2,,"“@+1/2.j=9.9'+1/2.j
—-(D-D,);_ v W i i
+(D—Du):.j+1;z'“f.j+1/29?._i+1f2
W,
- (D— Du)x’.j—lfz'nr',jhl,’sz:{j—l,fl] aQIQ
{(4.13)

In the above, | is the identity matrix, and D and D, are
the nviscid and viscous flux Jacobians, D = 88/7Q, and
D,.=08,/¢Q, respectively. The matrices are indexed using
the convention that they will multiply vectors 4 Q evaluated
at the same locations; ie, matrix D, ., multiplies
4Q; . p,, ete.

In the previous equations, surface-averaged values were
used for the discretization of inviscid and viscous fluxes,
both in the residuals, Egs. (4.5), (4.11), and in the left-hand
side, Eq. (4.13). The remaining step in the discretization
procedure is to relate these surface-averaged values to the
unknown volume-averaged quantities, so that Eq. (4.9) can
be solved and the solution advanced in time. A popular pro-
cedure [6] consists of approximating surface-averaged
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values of Q by means of extrapolation from the volume-
averaged values. Using a generic index / for either i or j, two
possible extrapolations are defined, one from the “right”
{positive) and one from the “left” (negative)

Qi p=QF L1 +0)VQ + (1710 4Q)],  (414)

where forward and backward difference operators A(-) and
V(-) have been utilized
ACh= (D= VEL=0)— ()0, (4.15)
and different values of the two parameters ¢ and x yield dif-
ferent kinds of space accuracy. Specifically, ¢ =0 yields a
first-order upwind scheme, whereas ¢ = 1 is necessary for all
of the higher-order extrapolation formulas. In particular,
k=1 corresponds to second-order central differences,
Kk = —1 resuits in a second-order upwind scheme, and x =1
yields a third-order upwind-biased extrapolation [10]. On
the left-hand side of the equations, only first-order
extrapolations will be used for simplicity, whereas the fluxes
in the unsteady residual will be approximated with one of
the higher-order upwind formulas for increased accuracy.
The extrapolation formulas just discussed are used for the
discretization of the inviscid fluxes in the steady residual,
Eq. (4.5). Specifically, the fluxes are split in two portions,
which convey the information propagating in the positive
and negative directions, respectively. More details on the
usc of flux-split techniques in computational fluid dynamics
can be found in the review article by Roe [11]. For the
generic index /

S!+i12=S.'++1/2+S.:-1/2s (4-]6)
where
+a,5 |
_.’m—f_
S.'+1,rz Ny = +12 2 el Q.u—uz, (4.17)

and the contravariant velocity i is defined as the component
of the relative velocity normal to the surface /4 1

ﬁH—|./2=(“_“Q).'+1/2'“!+1,’2' (4.18)
In the above, the velocity in the liguid phase u is
extrapolated from the cell volumes to the cell faces using the
same formulas discussed in Eq. (4.14). In the biofilm, u in
Eq. (4.18) should be substituted with u,, which is known at
the cell faces. The surface velocity ug, is also known at the
cell faces. Values that are known at the cell faces can be
utilized by means of the trivial “extrapolation”

(4.19)

(=0 e=0)n
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It might be noted that in the above formulas the positive
flux contains the information that propagates from left
towards right and utilizes the extrapolation formulas from
the left (negative). The opposite is true for the negative flux.
The inviscid Jacobian matrices can be similarly split,

D, 12d4Q i 1p= D.'+112 4Qf p+ ﬁ.r+u2 4Q7

zﬁ!trl/def"' ﬁﬂm 4Q,, y, (4.20)

where the first-order extrapoiation formulas for A have
been utilized, and the generalized Jacobian matrix D=D -n
has been introduced. The generalized matrix has the simple
(diagonal) form

(4.21)

The viscous fluxes at a face /4 1/2 are related to the
directional derivative of concentration, in the direction
orthogonal to the face itsell. For species & they are given as

dC
S o) = (D) r+;;2 e Vck_(Dk)lJrl,fzd - ’

ivap

(4.22)

where the generalized viscous (lux vector §, =8, - n has been
introduced. The diffusion coefficient at a cell face (D}, 1,2
is evaluated as the arithmetic average of the ceil volumes
that share the face under consideration. The directional
derivative can be evaiuated in terms of components in the
i~-direction and the j-direction. The final result reads

dac, ac,
m‘—(“wuz n;) |Vf'| Y *(“Huz n) Ve — o’
(4.23)

where ¢ and 5 represent generalized curvilinear coordinates
[5] in the i- and j-directions, and n,, n, are their local unit
normals, respectively. In most cases of practical interest, dif-
fusion in the streamwise direction is negligible, and the only
important contribution to the viscous fluxes is diffusion in
the normal direction. This physical result translates into a
simplified version of the viscous contributions (5], whereby
the generic /-direction becomes the j-direction only, the
variation in £ (or i) is negligible, and the directional
derivative reduces to

dC, aC,
= v 2k, (4.24)
an; s on

In the above, the unit normal in the #-direction n, coincides
with mr;,,,. The concentration gradient JC./dn is
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approximated by a second-order accurate difference, and
the magnitude of the gradient in the p-direction |Vy| is
approximated by the ratio of the cell surface to the average
cell volume

8C,

a3 = TRy

(5"7 )}_Hﬂ (Cr)iv1 —(C)ys
5§+1/2

05(2,4+ 2,

(4.25)
|V'?|j+ 2=

More details on the modeling of diffusion fluxes in conjunc-
tion with finite-volume techniques can be found in Walters
etal [12].

The viscous flux Jacobians are obtained by neglecting
the variation of diffusion coefficients with respect to the
vector Q. After some algebra, they can be written as the sum
of “positive” and “negative” contributions,

(bz!)j+i,’2AQj+]/2
‘_(b )j+1f2AQj+|,t'2+( )j—+ l,:‘ZAQj_+ 12

:(bu)jJruzAQJ"'(D«:)11|/2AQ,-‘+19 (426}

where

_ 1
{6u)jii 2= FDjv i V.0 (;) i, (4.27)
7

and D represents the diffusion coefficient for the generic
Species.

The source terms that appear in the steady residual,
Eq. (4.5), are modeled in Section 2. The source term
Jacobian is evaluated in a straightforward manner.

Substitution of the previously discussed expressions for
fluxes, source terms, and their Jacobians into the linearized
equation, Eq. (4.9), results in a set of coupled linear equa-
tions for the volume-averaged unknowns 4 Q7. Specifically,
the equation written for the volume (i, j) contains values of
A4Q7 for the volume (i, j) itself, and also for volumes
(it 1, 7) and {i, j + 1}. However, the contribution (i + 1, j)
is due to the negative portion of the inviscid flux Jacobian
only, as can be inferred from Eq. (4.20), and the contribu-
tion (i—1, j} is due to the positive portion only. A close
examination of the Jacobian matrices, Eq. (4.21), reveals
that when the normal velocity @ is positive, the negative
Jacobian is identically zero, and vice versa for a negative ii.
This justifies the use of a marching algorithm for the solution
of Eq.(49) when the imposed velocity field in the
streamwise direction is either positive or negative. Specifi-
cally, the governing equations are solved simultaneously for
all of the volumes at a given i-station, iterating umntil the
solution at the new time step # + 1 is recovered, and then the
procedure is repeated at the new station i + 1 for a positive
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velocity field, or /i —1 for a negative field. At every station,
a block-tridiagonal system of equations has to be solved;
that is, the generic equation for volume (i, j} contains con-
tributions for 4Q7” at volumes (i, j), (i, j + 1), and (i, j— 1)
only. For a positive velocity field, the contribution (i - 1, §)
is multiplied by 4Q_ | , which is zero because the previous
i-station has been converged, and similarly the contribution
(i+ 1, j) is multiplied by a zero 4Q/, | | for a negative field.
The solution procedure for block-tridiagonal systems
of equations is carried out efficiently using recursive
formulas [5].

It may be noted that the marching technique will not be
applicable in the presence of a velocity field of mixed sign
(partially separated and recirculating flow). In this case, a
marching/global algorithm is necessary, where the flowfield
is swept forward and backward until convergence is
achieved. However, the cases presented in this paper will
involve attached Mows only.

At this point, the remaining quantities that have to be
evaluated are the solid phase velocity v, in the biofilm, and
the cell surface deformation velocity ug, in both bulk liquid
and biofilm. The determination of the solid phase velocity u,
15 based upon the integral formula, Eq. (3.6), which can be
discretized and solved for the values of u, at the cell faces. In
the process, it becomes necessary to make the before-men-
tioned assumption that the direction of u, is perpendicular
to the solid wall. Consequently, the vector u, can be written
as u,=wu.e,, where u, is its magnitude and e, is the unit
normal to the solid wall. Then, Eq. (3.6) can be discretized
for the generic volume (4, j) and reads

[uie, n)F] ;o —[ule,  -n) 9’]5._;’7 12
+ [ux(eu_\ -m) F, /2.5 [“\(eu, n) S 172,

= L (Aﬁn W'Vsub“'l') Q,}w
1—e,\, 2, Pr '

(4.28)

The left-hand side of the previous expression can be
dramatically simplified when the assumption is made that
the streamwise direction is parallel to the solid wall, which
translates into zero dot products between e, and the unit
normals n,, . ;. The reduced equation

[u,(e, n) y]f.,H- y2— Lude, -n) S iimp

1 Npan W e
- ( Yy __l_'ﬂ) Q,
AV ‘

(4.29)

can be solved for the vector magnitudes u, by marching
from the solid wall to the interface, using the boundary
{imitial) condition u, =0 at the wall.

Once the vector u, has been determined for all cell faces
in the biofilm and for the interface, the vector u, can be
evaluated at the interface, using Eq. (3.14), once it is
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assumed that the interface source term R,. is also a vector
whose direction is known ({(again, the direction per-
pendicular to the solid wall).

At this point, all of the values of physical interest have
been determined at a given time step n and/or iteration step
P. In order to advance the solution in time, it is now
necessary to specify the grid movement as it evolves and
deforms to follow the biofilm growth at different streamline
locations. Specifically, the grid is allowed to move and
deform in the j-direction only (the direction normal to the
wall}). Once the interface velocity is determined, all the
remaining faces in the j-direction are allowed to move
following a linear distribution of ug, with space, from the full
value at the interface to zero at both the centerline and the
solid wall. This procedure determines the values of ng, at all
cell faces in the domain.

The final step that needs to be taken in order to evaluate
the new volumes and areas for the new grid (the one that
has moved with the specified deformation velocities ug, now
known) is to relate cenrroid values of uwg to verfex values.
Specifically, all of the vertices that define a given volume
have to be moved in such a way as to have an overall face
deformation velocity equal to the known value ug. Once the
location of the new vertices is established, the determination
of the new volumes and surface areas is made possible. The
vertex movement is started at the owtler, where vertex
velocities are taken to have a component in the e, direction
equal to the ug in the last volume. Regressing in the
streamwise direction, the vertex velocity component in the
e, direction is extrapolated from the known values at the
cell face {the local u,) and the previous vertices, assuming
a linear variation in space. Exploiting the fact that the grid
movement is not allowed in the j-direction, magnitude and
direction of the vertex velocity can be evaluated from
geometric considerations once the component in the e,
direction is known. The actual displacement of the vertices
follows by multiplying the vertex velocity by the time step.
The reason for chosing the outlet instead of the inlet as the
starting point for the grid update lies in the fact that the
axial variation of the thickness is a minimum at the outlet,
as well be seen in the next section. The drawback of this
approach is that only information at the time step » can be
used to determine the shape of the grid at time a+ 1,
because the marching algorithm requires knowledge of both
old and new grids to update the solution from time # to time
n + 1. On the other hand, considering the biofilm horizontal
at the mlet violates the physics of the problem, and that
assumption would be required in order to start the grid
update at the inlet and utilize current information to change
the grid.

The implementation of the boundary conditions is
straightforward when the finite-volume approach is
employed. The centerline surface will collapse to a surface of
zero area: at the wall a zero species gradient boundary
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condition can be imposed, at the inlet concentrations are
specified, and at the outlet the concentrations will be
extrapolated from the interior values. The interface bound-
ary conditions are also simplified considerably by the use of
the finite-volume approach. The substrate equations will be
essentially unaffected by the presence of an interface,
because the relative fluxes are automatically continuous
between bulk liquid and biofilm, in agreement with
Eq. (3.11). The N, equations in the bulk liquid and the
N pan — 1 equations in the biofilm that deal with particulate
species have a boundary condition of the kind illustrated in
Egs. (3.12)and (3.13), and their relative fluxes (S —S,) - n at
the interface will be given by the surface source terms.

5. NUMERICAL RESULTS

Preliminary numerical results have been obtained using
the approach described. A simple biofilm model consisting
of one microorganism, psendomonas aeruginosa, and one
substrate, glucose, has been investigated, and a “standard”
solution has been obtained for the time evolution of the
system. Moreover, the solution sensitivity to the variation of
a few control parameters—time step, number of iterations
per time step, grid size in the radial and axial directions,
initial thickness of the biofilm-—has been studied.

The important parameters of the standard solution are
the following:

» Pipe length L = 2, diameter & =4 x 10~ m, volume
flow rate 0 = 1.4 x 10~% m¥/s;

« Number of substrates Ng,=1 (glu), number of
particulates N, =1 (pse), number of reactions N, = 1;

« Molecular diffusion coeflicients,

Dy b =6 % 107° m?/s,

(5.1)
Dpse.bulk =12x 10_9 m2/s, Dﬁlm/Dbulk = 0-9;

+ Particulate density and liquid phase volume fraction
in the biofilm,

Poe = 10T kg/m?, ¢ =08=¢,,.=02; (5.2)

» Chemical reaction coeflicients (Monod for the
substrate, first order for the particulate), Egs. (24), (2.5),

Qlu
Ty oy =——
64 Oy, (5.3)

Tl,psc = 10_4ste kg/m3 §;

Vl,glu = —1.78,

vl.psc= I’

« Interface flux of particulate mass, Eq. (2.12),

Rya=5x10°L; kgm?fs; (54)

« Initial concentrations, biofilm thickness,

Coul0)=2x 1072 kg/m®,  C,,e(0) = O kg/m?®,

(5.5)
L.(0)=10um;

« Numerical parameters: Euler Implicit, second-order
upwind,

=0, =1, ¢=1, k= -1, {5.6)
» Phsysical time step 4¢,
A1=864 5=1x10""q, (3.7)

o Grid size: number of grid points in the biofilm
N =10, number of grid points in the bulk liquid
N,a=21, number of gnd points in the axial direction
NaxiaI:ZO'

The geometry of the pipe and the flowrate result in a
Reynolds number less than 2100; thus laminar flow regime
and molecular diffusion is assumed in the pipe. The average
velocity in the pipe is v =0.111 m/s.

Results obtained for the “standard” case are shown in
Figs. | through 4. The time evolution of the film thickness
is plotted in Fig.1. Curve (a} shows the thickness at the inlet
(actually, in the first column of finite volumes), curve (b) is
in the middle of the pipe (x =1 m), and curve (c¢) shows the
outlet vajues (the last column of finite volumes). It is easy to
see that a steady state is eached by the end of the first day.
In fact, another run was continued for six days of simulated
time, and the thickness of the {ilm did not change more
than 1 %.

Figure 2 shows the thickness profiles at different times,
namely at 0.1, 0.3, 0.5, and 1 days, along the pipe. In general,
the thickness of the film decreases as the distance increases.

1.2E-D4

1.0E-041 {a) inlet

8.0E-05

(b) middie
8.0E-05

Thickness [m)]

(c) outlet
4.0E-05

2.0E-05

0 o1 02 03 04 05 06 07 0B 08 1
Timae [day]
FIG. 1. Standard experiment. L, versus time.
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FIG. 2. Standard experiment. L versus axial distance.

The reason for this can easily be found by looking at Fig. 3,
which shows the steady state concentration profiles of
glucose and pseudomeonas as a function of the axial distance
from the inlet. Since the only source of glucose is at the inlet,
it becomes consumed as the liquid moves in the pipe, thus
less and less “food™ is available for growth down the pipe.
For this and the following results, the average concentra-
tions are calculated as volume-averaged values for a given
column 4,

Ccrer = Z——J—' C""Q‘i", (5.8)
5,9,
and the interface concentrations are the ones in the first
volume of the bulk liquid off of the surface film,
An interesting phenomenon can also be seen by com-

16 40
14 F3s
12 {d} interface (pse} Lan
M E
E,
5 10] 125 =
2 {a) average (gh) k4
& o 120 §
: £
& & 15 &
5 {b) average (pse) §
't 10
2] ¢) interface {glu) El
0

[9) T T T T T T T T
0 02 04 06 08 1 12 14 16 18 2
Axial distance {m]

FIG. 3. Standard experiment. Average and interface concentrations
versus axial distance at r=14
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paring average concentrations with the values at the
interface. There is a large difference between the average and
the interface concentrations, due to diffusional resistance.
The flow regime is laminar; therefore the diffusion
coefficients are very small and the diffusional distance is the
entire radius of the pipe.

Figure 3 shows that both the average and interface
concentrations of glucose decrease as the distance from the
iniet increases. The shape of the average pseudomonas
curve is also as expected, increasing monotonically from
the inlet. On the other hand, the interface concentration of
pseudomonas is maximum at the inlet; then it levels off
and increases only slightly along the pipe length., This
uncxpected behavior can be explained as follows. At the
interface there is a flux of pseudomonas into the bulk liquid
from the film, which is a function of thickness. Molecular
diffusion transfers some particulate to the next volume
element in the bulk, and some (insignificant compared to
the other ‘processes) is produced by the biochemical
reaction. Finally, advection transports pseudomonas in the
axial direction. However, at the interface the advective
velocity is very low, since the flow regime is laminar.
Therefore, at the inlet a large amount of pseudomonas is
produced by detachment, and oniy a very small fraction of
it is transported to the bulk of the liquid phase. Moving
downstream, the film thickness is considerably less, and so
is the amount of detached pseudomonas. Consequently, the
sum of the advected and detached pseudomonas is less than
the previous amount. However, further downstream the
change in thickness becomes less drastic, thus the sum of
advection and local production will eventually increase
moving downstream. This explains why there is a slight
increase of interface concentration of pseudomonas. [t
might be useful to point out that different concentration
gradients could have been observed by changing the net

(a) inlet {glu)

141
(d) outlet (pse)

Concentration [mg/l)
3

{c) inlet (pse

02 03 04 05 08 G7 08 08 1
Tims [day]

0 01

"FIG. 4. Standard experiment. Average concentrations versus time.
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detachment expression, Eq. (2.12), or medifying the flow
regime.

The time evolution of the average glucose and
pseudomonas concentrations at the inlet and the outlet is
depicted in Fig. 4. As expected, the average concentration
of glucose decreases with time, and the outlet concentration
is always below the iniet concentration. Conversely, the
average concentration of pseudomonas is constantly
increasing, and the outlet is always above the inlet concen-
tration due te advection in the downstream direction.

5.1. Size of the Time Step

The present version of the program uses fixed, user-
supplied time steps for advancing the sclution in time.
Consequently, it is important to see how the accuracy of
the simulation is affected by the change in time step. To this
end, two experiments were attempted: the first one (runl)
using a timestep of 4.32 s, or twice as smail as the standard
case, and the second one (run2) using 2.16 s for a timestep,
or four times smalier. In order to put these timestep values
into perspective, it is useful to estimate the CFL-like
numbers associated with advection, diffusion, and reaction
phenomena, which can be defined as

Atv
CFLadvz‘Es

At D
CFLdiI‘f_(Ax)zs (59)
crL,., =2t

reac
max

where v is a fluid or a solid phase velocity, D is a diffusion
coefficient, Ax is a spatial step, and u,,,, is a chemical reac-
tion characteristic time, most often the coefficient of the
first-order reaction rate expression, Eq. (2.10). Typically,
explicit integration systems are stable if the CFL-like num-
ber is less than one, Implicit systems are usually uncondi-
tionally stable, if the partial differential equations are linear.
However, for accurate resolutions of unsteady phenomena,
the CFL number has to be kept at a moderate value. For
nonlinear systems, such as the present model, the CFL
number can be greater than one, but in extreme cases the
algorithm might become unstable. The CFL-like numbers
for the standard run are (at r =0):

CFLugv amia = 91,

CFL.gv. radia & 0.1,
CFLgir e 5.1 x 107,
CFL ...~ 9.2x 0%

(5.10)
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FIG. 5. Relative difference between the standard experiment and runl
and run2 (L)

It is clear that the advection is resolved in time, unlike the
physical transient associated with diffusion and chemical
reactions. Moreover, CFL ;;; and CFL, .. are much greater
than one, leading to the possibility of instabilities. As a
matter of fact, when the timestep of the standard calculation
was doubled, the run aborted.

A sample of the results 1s shown in Figs. 5 and 6. In
Fig. 5, curves (a) and (b) represent the relative difference
between the biofiim thickness obtained with runl and the
one obtained by means of the standard calculation, in the
middle of the domain and at the outlet, respectively.
Curves (¢} and (d) show the relative difference between
run2 and the standard. Tt may be noted that the difference
approaches zero as the calculation approaches a steady
state, consistent with the fact that only the time discretiza-
tion was affected by the experiment. Moreover, the maxi-
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FIG. 6. Relative dilference between the standard experiment and runt

and run2 (CH at £ = 1d),
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mum difference shown is less than 0.05%, although this is
not the maximum difference between the runs. At the very
first time steps one can expect even larger relative differences
(these graphs show the values at every 500 time steps, thus
the initial events are missing). Since the thickness of the film
is very small near the initial state, even larger relative
differences can still mean very small absolute differences.

The relative differences of the average concentration of
glucose at = ld are shown in Fig. 6. Curves (a) and (b)
represent the relative difference between the standard
calcuiation and runl and run2, respectively. In this case, the
relative difference increases as the distance from the inlet
increases, because the marching algorithm will propagate
errors and inaccuracies downstream. It is important to
point out that the relative differences are very smali, ranging
from 0.01 to 0.06 %.

5.2. Number of Iterations per Time Step

Another numerical parameter in the algorithm is the
number of iterations performed at each time step. 1deally,
the unsteady residual should be fully converged at each time
step. This is particularly . true when there are differences
between the order of accuracy of the space discretizations
utilized in the left- and right-hand sides of the equations, as
is the case here. In the present calculations, 10 iterations per
time step were performed, significantly more than the two to
four deemed sufficient in the current literature [{3]. In
order to test this choice, two additional runs were made, one
with five iterations per time step (run3), the other using only
two iterations (rund).

The relative difference between the thickness values at the
inlet and the outlet as a function of time for hoth cases is
shown in Fig. 7. Until 0.4 days the differences for both runs
are negligible. Afterwards, the relative difference in inlet

0.035

0.031
(b) inlet (2 iter.)

e
9
n
q

0.021

Relative difference (%}

Tty outiet (5 iter.} {a) inlat (5 iter.

{d) outlat {2 iter.)

02 03 04 05 06 07 08 08 1
Time [day]

FIG. 7. Relative difference between the standard experiment and run3
and rund (Lg).
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thickness becomes more significant. This is probably due to
the nonlinear nature of the reaction rates, which is par-
ticularly significant at the inlet and which translates into
significant unsteady effects. On the other hand, the Monod
kinetics becomes approximately linear for low concentra-
tions of glucose, which is the case at the outlet after the
initial transient, thus only one Newton iteration would
suffice to advance the integration, as shown by curves (c)
and {d) in Fig. 7.

The differences in concentrations, not represented here,
support the statements made above. Again, the largest
differences are near the inlet, which is the result of the
more nonlinear behavior of the Monod kinetic expression.
Near the outlet all concentrations are almost identical.

5.3. Grid Convergence Study

The accuracy of the predictions obtained was tested by
performing a grid convergence study. In the first test (run3),
the number of radial grid points in the bulk liquid was
doubled to N,.,=41. whereas the second test (runé)
featured a more refined grid in the axial direction, with
N.w=39. Finally, both radial and axial grid sizes were
doubled, and a third test {run7) was conducted (Ng,, =10,
Noadgiar = 41, Noia =39). The number of grid points in the
biofilm was left unchanged, because the overall thickness of
the film does not exceed a few microns, which is three orders
of magnitude smaller than the radial distance.

The biofilm thickness profiles at ¢ = 1d obtained with the
standard run and the new runs are shown in Fig. 8 Some
discrepancies can be seen in the first few volumes,
approximately until x =0.6 m. Figure 9 shows the relative
differences between the previous runs. The solution is more
sensitive to the axial refinement that the one in the radial
direction, and the maximum discrepancies occur again at
the inlet region. Overall, although the results are not
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FIG. 8. Biofilm thickness L, at ¢ = 14: slandard, run$, runé, and run7.
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converged within plotting accuracy, the standard run
gives quantitatively reasonable predictions for engineering
applications.

54. Effect of Initial Thickness

The effect of assuming a given initial biofilm thickness to
start the simulations was also tested (run8). The result is
shown in Fig. 10, whereby the initial thickness of the film
was changed from 10y to 5u. The inlet and outlet thickness
values as functions of time are shown for both the standard
solution and the new one. As expected, both runs reach the
same steady state values, but the time evolution of the new
calculation lags behind that of the standard run.

5.5. Multispecies Biofilm

In order to test the algorithm proposed for a multispecies
biofilm, a simple run was performed with two particulate
components (N,,,=2). A second growth reaction was
added (N,,, =2) to describe the growth of the new species
(ps;). The other species ( ps,) was assumed to have the same
characteristics as pscudomonas in the standard run. The
new reaction parameters read:

Qlu
I, Thpe=7rt—,
T 164 Qe

T o =2%x107°0,,  kg/m’,

Vogu=—178, vy, =

(5.11)

1t should be noted that ps, does not participate in this reac-
tion, thus its reaction rate expression is of zero order with
coefficient one, and its stoichiometry is zero (the same is
true for ps, in the first reaction). Moreover, the rate of
growth of ps, is twice that of ps,; otherwise the two

SE1/106/2-5
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FIG. 10. Biofilm thickness L, as a function of time (standard and
run8).

particulates are the same. The initial volume fractions (
and ¢,,,,) were both set to 0.1.

Computational results from this run are presented in
Figs. 11 through 13. In Fig. 11 the inlet thickness values are
shown as functions of time for the present two-species
biofilm and compared with the standard run. Due to the
faster growth of ps, the film grows significantly faster and
reaches steady state before the standard case. However, the
steady state thicknesses are practically the same. Figure 12
shows how the volume fractions of the two species at the
interface change as functions of time at the inlet and the
outlet. It is clear that the faster growing particulate (ps,)
very quickly outcompetes ps, and becomes the dominant
species after + =0.14. It is also obvious that the lower con-
centration of glucose at the outlet results in a slower
“takeover.” Finally, Fig. 13 shows the axial profiles of the

Epsy

(two particulates)

{one particulate)

[¢] 0t 02 03 04 05

Time [day]

06 07 08 09

FIG. 11. Biofitm thickness L, at the intet Tor a single particulate
(standard) and two particulates (run9),
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FIG. 12. Volume fractions of particulates versus time.

volume fractions at t=0.1, r=0.5, and ¢t =1 days. Again, a
gradient of volume fractions can be observed along the pipe,
as a result of slower growth downstream.

5.6. Operation Count

The operation count for the present technique was
estimated. In order to determine it, a sketch of the algorithm
might be useful:

begin
initialize system
=1,
while t < ¢4
begin
calculate velocities
calculate grid velocity
move grid
for all axial positions
begin
while not converge
begin
calculate Jacobians
calculate fluxes
build tridiagonal matrix
solve system (Block-Thomas)
update solution
check convergence
end
end
t=1+ 4t
end
end

The size of the problem is determined by the following
parameters: number of components (c= N, + Ny,
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FIG. 13. " Volume fractions of particulates versus axial distance.

number of reactions (r=N,_,) total number of radial grid
points (n=AN_4+ Ny,). number of axial grid points
(m=N,,), number of iterations (N, ), and number of
timesteps to be performed (N, = (f.—10)/41). For
simplicity a constant timestep is assumed. Since there
are (n— 1){m—1)= O{nm) volumes, calculating velocities
takes O{mm) time. The same time (O (nm)) is needed to
calculate the grid velocities, since O(m) time is needed to
calculate the interface velocities, and (m—1)(n—2)=
O(nm) faces have to be moved. At every axial section there
are O(n) surfaces and for each surface four Jacobians (two
viscous and two inviscid ) of dimensions ¢ x ¢ are calculated,
for a total of 40(n) ¢? = O(nc?). The same is true for fluxes,
with the exception that instead of ¢ only ¢ entries exist, thus
it takes O{nc) operations only. In order to calculate the
reaction terms, O(nr’c) operations are needed (see
Eq. (2.4)). To calculate the source term Jacobian, O(nr3c?)
operations are necessary. In order to soive the block-tri-
diagonal system O(nc?) operations are required [5]. This is
a considerable improvement over the O(x’c’} operations
required if full Gauss elimination is used. Thus the overall
operation count reads

T=0(N [O(mm) + (m — 1) Ny O(nc?)

+ O(nric®) + O(ne*N ), (5.12)

which reduces to

T=O(N e Nyormnrc?). (5.13)

The previous formula shows that the computational cost
for larger problems will increase with the cubic power of the
number of species, the square of the number of chemical
reactions considered, and quadratically if the grid size in
both directions is changed. Moreover, refining the grid can
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lead to numerical stability problems, which might affect the
required number of steps and lead to a more than quadratic
dependence of the operation count from the grid size.

6. CONCLUSIONS

A finite-volume-based numerical technique has been
introduced and described for the simulation of biofilm pro-
cesses in closed conduits. The algorithm is able to resolve
unsteady problems with multiple space and time scales and
moving boundaries. The present methodology can be
extended to three space dimensions and different reactor
configurations, duc to the geometric flexibility obtainable
by means of {inite volumes.

Future work requires including fluid dynamic and
thermodynamic phenomena in the model, so that a coupled
set of species continuity, global momentum, and energy
equations can be discretized and solved. Moreover, work is
in progress on the validation of the present approach by
comparison with experimental data.
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